

DIMENSIONING

Multi Mode Calculations

According to the example, mentioned on page 44, it is requested to establish a fiber connection between to distribution frames, with a distance of 200 meters between the two distribution frames. It is also requested to use drop - and patch cables at both ends. The required speed is 1Gbit. Due to the patch cables, we shall need three pairs of connectors.

Losses

Fiber Loss (at 850nm)	$2,5 \mathrm{~dB}$ pr Km	$0,5 \mathrm{~dB}$
Connector loss	$0,4 \mathrm{~dB}$ pr. pairs	$1,2 \mathrm{~dB}$ (3 pairs)
Splicings, if necessary	$0,05 \mathrm{~dB}$ pr. splicing	
Expected Loss		$1,7 \mathrm{~dB}$
Reserve for repairs,if necessary		$3,0 \mathrm{~dB}$

In other words, we will need a pair of media converters with a budget of at least $4,7 \mathrm{~dB}$.

Below, an example from Transition
Figure 1

There are different kinds of media converter modules, capable of different distances. Assuming a speed of 1 Gbit, distances up to 2 kilometers will be possible, by using multi mode fiber. If we use single mode fiber in stead, the maximum distance may be increased to 125 kilometers.

$$
\begin{aligned}
& \text { 1000BASE-T (RJ-45) [100 m/328 ft.] } \\
& \text { 1000BASE-SX 850nm MM (SC) } \\
& 220 \mathrm{~m} / 722 \mathrm{ft} \text {) Link Budget: } 7.0 \mathrm{~dB} \\
& 550 \mathrm{~m} / 1804 \mathrm{ft} \text {) Link Budget: } 7.0 \mathrm{~dB}
\end{aligned}
$$

This converter can manage distances between 220 and 550 meters. If you use $62,5 \mu \mathrm{~m}$ fiber, the distance will be only 220 meters. If you on the other hand use $50 \mu \mathrm{~m}$ fiber (which, over time, has become the most commonly used fiber), the distance will be 550 meters. With regard to losses there is a total budget of 7 dB , that is, no problems at all.

Single Mode Calculations

Let us take another example. It is requested to establish a fiber connection between two distribution frames, placed in separate buildings. The distance between the distribution frames is 30 km . Drop - and patch cables will be used at both ends. The requested speed is 1 Gbit . Due to the patch cables at both ends, 3 pairs of connectors must be included.

Fiber loss (at 1310nm)	$0,4 \mathrm{~dB}$ pr. km	12 dB
Connector loss	$0,4 \mathrm{~dB}$ pr. pairs	$1,2 \mathrm{~dB}$ (3 pairs)
$\mathbf{6}$ splicings	$0,05 \mathrm{~dB}$ pr. splicing	$0,3 \mathrm{~dB}$
Expected loss		$13,5 \mathrm{~dB}$
Reserve for repairs, if necessary		$3,0 \mathrm{~dB}$
Total budget		$16,5 \mathrm{~dB}$

The reason for the 6 splicings in the budget is due to the fact, that you can not buy fiber drums longer than 5-8 kilometers as the cable drum otherwise would become too big.

Figure 2

As you can see, the installation is the same as in figure 1.

$$
\begin{aligned}
& \text { 1000BASE-T (RJ-45) [100 m/328 ft.] } \\
& \text { 1000BASE-LX 1550nm SM (SC) } \\
& \text { [65 km/40.4 mi.] Link Budget: } 21.0 \mathrm{~dB}
\end{aligned}
$$

Using the information in the table above, it is possible to calculate a budget for a distance of 30 kilometers. If we have a media converter budget of 21 dB and a consumption of $16,5 \mathrm{~dB}$, we do not have any problems at all. The 100 meters, referred to in the table, is the copper connection. The length of the copper connection must not exceed 100 meters (90 meters of fixed wiring).

